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ABSTRACT

Speech recognition allows for extremely efficient man-machine communication.
Since most computers are used to interactively input or output data, communication by
speech represents the ideal computer interface. Recognition requires intelligence, and is,
therefore, a much more difficult problem than speech production. While general speech
recognition is a daunting task, a much simpler system would still be useful. This thesis
presents a simple speech recognition system that can be implemented with a personal
computer and a sound card. Once a limited system has been implemented, its capabilities
can be scaled by using faster computers and specialized hardware as necessary.

Fuzzy logic allows effective decision making in the presence of uncertainty.
Identifying spoken words, even in an ideal environment by a trained speaker, is a
complex task filled with uncertainty. The speech waveform is nonlinear and variant,
removing the possibility of simple analysis. However, by analyzing the waveform for
reoccurring and semi-stable features, small segments may be classified. A fuzzy expert
may then make decisions based on these features to identify the spoken word. The
identification represents the decision that the chosen word is present and also that other
words are not present. Furthermore, the system's confidence in its identification can be

used to accept the identification or to request further information or help.
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CHAPTER 1
INTRODUCTION

1.1 Background

Speech is a human's most efficient communication modality. Beyond efficiency,
humans are comfortable and familiar with speech. Other modalities require more
concentration, restrict movement, and cause body strain due to unnatural positions.

In the 1950s, most computer system input was achieved through switches, and
results were read off of LEDs. Later, punch cards were used. In the late 1970s, the CRT
terminal became common, allowing easier, more efficient input and output. Keyboard
entry is much faster than setting switches or creating punch cards, and reading characters
is much faster than deciphering binary results from LEDs or punch cards. However, even
with training, typing is slower than continuous speech. Furthermore, while typing or
reading, the user must focus on the task of input and output. During speech, the user is
able to perform other tasks allowing for multi-modal input and output.

During spontaneous speech, an average of 2.0 to 3.6 words per second can be
communicated. Skilled typists can type around 1.6 to 2.5 words per second, but only
when typing prepared text. A skilled typist averages only 0.3 words per second when
typing spontaneous text or when problem solving. This productivity is comparable to
unskilled typists who type only 0.2 to 0.4 words per second under optimal conditions.
The average speed of handwriting text is around 0.4 words per second.! Silent reading
can achieve 2.5 to 9.8 words per second, but to achieve the higher rates with high

retention, the reader must concentrate only on reading.? These comparisons suggest that

I Lea, p. 6.
2 Newell, p. 50.



an optimal man-machine interface would incorporate speech recognition as completely as
possible.

With computers becoming ever present in business, government, and education,
there is a tremendous market for faster, more efficient man-machine interfaces. The
majority of computer processing time is used for word processing, data entry, or waiting
for these inputs. By allowing humans to communicate in their most natural mode and at
natural speeds, efficiency, quality, and throughput increase. Speech also offers easy and
cost-effective communication over long distances and access to the disabled.

These are convincing reasons for researching and developing speech recognition.
However, achieving recognition is a complex and daunting task. While humans learn
language as children by exposure only, machines require complex systems to even
perform the most basic of recognition tasks. Even after over forty years of research,

speech recognition as a science is still in its infancy.

1.2 Problem Definition

The main problem in speech recognition, as with other complex tasks that require
some form of intelligence, is the amount of information that must be examined before
making a classification or decision. Speech recognition is nothing more than an
extremely complex pattern matching problem. The complexity arises from the variability
in speech rate, pitch, volume, and emotion. Together with the natural differences in
individual human voice production systems, these factors produce a variable and
nonlinear waveform. As if these challenges were not enough, a speech recognition
system must also deal with non-speech sounds and environmental noise.

Before creating a general system to perform continuous recognition in a noisy
environment with multiple speakers, a simpler system should be designed to allow a
single trained speaker in an ideal environment. Further simplifications can be made by

restricting the vocabulary and attempting to identify only isolated words. This thesis is



concerned with the isolated recognition of the set of ten digits [0 - 9] through the use of
digital processing techniques and the application of fuzzy techniques. After successfully
completing this "simple" task, the vocabulary may be increased and multiple speakers can

be incorporated.

1.3 Thesis Organization

In Chapter 2, the speech waveform is examined. Reoccurring features of the speech
waveform are shown. Chapter 3 covers the human auditory system, which is the most
adept and comprehensive recognition system known. The chapter examines information
gained from both biological and psychological studies, as well as the speech production
system. Chapter 4 reviews the history of speech recognition and current methods. The
chapter focuses on methods used to locate and identify the reoccurring features of speech
discussed in Chapter 2. Chapter 5 reviews fuzzy set theory and fuzzy logic. The use of
fuzzy logic allows effective decision making even in the presence of uncertainty. Chapter
6 discusses the isolated digit recognition system developed for this thesis. The design
tradeoffs and requirements are reviewed in depth. Chapter 7 presents the results of the

system, and Chapter 8 contains conclusions and suggestions for future work.



CHAPTER 2
THE SPEECH WAVEFORM

2.1 Physical Manifestation

The speech waveform is created by a series of discrete stimuli that control the lungs,
vocal tract, tongue, and mouth. The resulting sound depends not only on the current
stimulus but also on past stimuli causing a coarticulation effect. While the inputs that
produce the speech waveform are discrete, the waveform itself is a "two dimensional non-
denumerable continuum."? No matter how precisely we measure the waveform at any
instant in time, a finer, more precise measurement is always possible. However, the
continuity of the speech waveform has little to do with recognition. Proof resides in the
ear itself which discretely samples and filters the speech waveform before transmitting a
representation to the brain. Based on this information, it can be inferred that the speech

waveform contains much more information than is necessary for recognition.

2.2 Information Theory
Information theory provides an estimate of the information content of the speech
waveform. Words can be seen as units of information. Information theory terms the

average amount of information per symbol (measured in bits) as entropy:*

H(S) = Y~ P(S)log, P(S)

Entropy in a word S composed of symbols S; (i = 1, 2 ... n) depends on the
probability P(Sj) of occurrence of each symbol S;. For written American English,

information theory defines an entropy of 4.1 bits / symbol. Depending on the unit of

3 Lea, p. 43.
4 De Mori, pp. 26 - 28.



information used for analyzing speech, entropies of 4.1 to 7.5 bits / symbol have been
calculated. However, using a hedge to account for context, an entropy of around 4.5 bits /
symbol is generally assumed. Using this information, the average information rate of
speech can be estimated to be around 50 bits / sec.?

However, speech of telephone quality must be sampled at 10 kHz with 11 bits /
sample. The average amount of information is then 110,000 bits / sec. Therefore, the
amount of information contained in the speech waveform is more than 2000 times greater
than the amount of information contained in speech itself. The task of a speech
recognition system is to reduce the amount of information contained in the speech

waveform to a more manageable and relevant level.

2.3 Unit of Representation

Speech can be broken down into several competing components: allophones,
phonemes, diphones, syllables, or words.® Each representation has advantages and
disadvantages. "Phone" denotes a minimal unit of speech sound. However, identifying
an individual phone is practically impossible due to an anticipation effect which causes
phones to overlap.

Researchers use allophones to represent the set of phones containing the same
information content. Allophones can be identified reliably, but require complex, time
consuming procedures. Also useful is the fact that allophones can be employed to
identify word boundaries. However, like the phone, the allophone suffers from an
anticipation or coarticulation effect. An even greater disadvantage is the large number of
allophones that can be contained in a given language.

Phonemes are the collection of allophones that operate similarly in a language.

Phonemes have an advantage over allophones in that the number of distinctive phonemes

5> De Mori, pp. 26 - 28.
6 Lea, pp. 125 - 131.



is quite small. However, phonemes are not easy to distinguish acoustically, overlap each
other, and require complicated processing procedures. The 44 phonemes shown in Table
2.1 belong to the International Phonetic Alphabet (IPA). The symbol used for each
phoneme is the most commonly accepted symbol, but others are sometimes used. A list

of the IPA can be found in many linguistic texts or in a good dictionary.

Phoneme | Example | Phoneme | Example
® pat n sing
© pay Y toe
2 about U book
a: father a pot
er care u boot
b bet 9 bought
tS church aU out
d debt Ol boy
€ bet p pet
1 bee I rent
f fire S sat
g get I shut
h hat 0 thing
I bit t ten
al by o that
ir pier A but
or butter 3r term
d judge \4 vat
k kit W wit
1 let y you
m met z Z00
n net 3 azure

Table 2.1: International Phonetic Alphabet

The IPA contains 44 phonemes. An example of each is

shown with the sound underlined.

A diphone is a transitional sound identified by segmenting adjacent phones at their

steady-state centers. By their very nature, diphones include transitional information that




can be useful in identification. Like allophones, the number of diphones in a given
language can be quite large and require a unique set of phonological rules for processing.

A syllable is basically "a vowel nucleus and its functionally related neighboring
consonants."” Syllables are relatively easy to identify in the acoustic stream. As a bonus,
many rules developed for dealing with phonemes are easily extended for use with
syllables. The major problem with syllables is the difficulty in identifying boundaries.
Again, as with phonemes and diphones, the number of syllables in a given language can
be unmanageably large.

Finally, every speaker in a language knows instinctively what a word is, yet it is
difficult to define phonologically. However, a word is the smallest unit of information
that communicates a complete message. Using words as the basic unit of recognition
eliminates many lower levels of recognition. However, temporal differences between
examples of spoken words make identification difficult, especially with larger
vocabularies.

Segmenting the speech input into units reduces the amount of information that must
be processed by higher level procedures. The larger the unit, the less information that
must be dealt with, but the more difficult accurate identification. Identification of the

units depends on identifying the sub-features they contain.

2.4 Speech Features

The speech recognition task can be broken into four processes: data acquisition,
filtering, feature identification, and classification. The first two processes affect the
amount of data that must be processed, but the last two processes are by far the most
difficult. Feature identification involves searching the speech waveform for semi-

constant patterns that reoccur under specific conditions. In order for a spoken language to

7 Lea, p. 129.



convey information, it must consist of a finite number of distinguishable and mutually
exclusive sounds.?

The following features can be used to identify a spoken sound regardless of the unit
of identification. However, researchers have primarily used these features when
identifying phonemes; Chomsky and Halle defined them for this reason in 1968. Due to
the variance in the speech waveform, the classifications become less useful as the unit of
identification becomes larger. The features are generally grouped into mutually exclusive
groups. But as with many other parts of the sound waveform, absolute distinctions are
difficult. The groups tend to overlap causing further difficulties in identification. Used

together, the groups can accurately define a sound unit.

Voiced vs. Unvoiced:

Voiced sounds are caused as air pressure pushes the vocal cords open and
causes them to vibrate. The sound produced has a pitch or fundamental
frequency that is directly related to the frequency of vibration. The peak
amplitude of a voiced sound is much higher than an unvoiced sound.
Unvoiced sounds occur when the vocal cords are held open allowing air to
pass through unaffected. The two fundamental unvoiced sounds are the
plosive and the fricative. A plosive is generated by a build up of air
behind the lips which is rapidly expelled. A fricative is generated by a
turbulent airflow through a constriction such as the teeth.?

Vocalic vs. Nonvocalic:
Vocalic sounds have a sharply defined formant structure. The formant is a
band of high energy concentrated in a specific frequency range. Formants
are generally found in vowels. Nonvocalic sounds lack a defined formant
structure.

Consonant vs. Nonconsonant:
Consonant sounds have high total energy, while nonconsonant sounds
have a lower total energy.

Tense vs. Lax:
Tense sounds have high total energy over a relatively long period of time
in a wide frequency band. Lax sounds have lower total energy
concentrated in a shorter time period in a tight frequency band.

8 Newell, p. 45.
9 Chen, pp. 50 -51.



Nasal vs. Oral:
Nasal sounds occur when the nasal passage is used as an auxiliary acoustic
tube. These sounds contain a wide frequency spread and a reduction in the
intensity of formants. Oral sounds contain a more defined frequency range
and usually high intensity formants.

Strident vs. Mellow:
Strident sounds contain higher intensity noise than mellow sounds.

Grave vs. Acute:
Grave sounds have a higher concentration of energy in the lower
frequencies, while acute sounds have a higher concentration of energy in
the upper frequencies of the spectrum.

Compact vs. Diffuse:
Compact sounds contain a high concentration of energy in a narrow region
of the spectrum. Diffuse sounds spread their energy across a wider region.

Flat vs. Plain:
Flat sounds are characterized by a weakening of the higher frequency
components. Plain sounds contain no such weakening.

2.5 An Example

Figures 2.1 and 2.2 show an example of the speech waveform for the word
"recognition." The word was sampled at 11 kHz and contains 7,465 signed 8-bit samples.
The word is easily segmented into syllables as receogenistion, or as time periods 1-3, 4-5,
6-7, 8-10. When segmented into phonemes, the word is represented as1cko gn1J o
n, with each phoneme taking one time period [1, 10].

Each phoneme can be characterized by its distinctive features. The phoneme x is
voiced, consonant, oral, acute, and flat. The phoneme ¢ is voiced, nonconsonant, lax,
acute, and compact. The phoneme k is unvoiced, nonvocalic, consonant, tense, mellow,
and compact. The phoneme o is voiced, nonconsonant, tense, acute, diffuse, and flat.
The phoneme g is unvoiced, nonvocalic, consonant, lax, mellow, and compact. The

phoneme n is voiced, consonant, nasal, acute, and diffuse. The phoneme I is voiced,



nonconsonant, lax, acute, and diffuse. The phoneme J is unvoiced, vocalic, consonant,

tense, acute, and compact.

127
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Figure 2.1: Amplitude Graph of the Word "recognition"
The time based graph shows the word represented as 8-bit signed values.
The word has been segmented into phonemes (1 - 10). Phonemes 4 and 9 are
the same, as are 6 and 10. Note the similarities and differences between them.

There are two © phonemes in the word (segments 4 and 9 in figure 2.1 and denoted
p4 and pg), and the comparison is enlightening. Notice the amplitude difference; p4 has a
lower total energy content than pg. This is a prosodic effect caused by the natural stress
positions in the word. Also pg contains more high frequency components than p4. The o
phoneme is a flat sound; therefore, the higher frequency components in pg are actually
carried over from the preceding J phoneme. This carryover is called a coarticulation
effect. There are also two n phonemes (denoted pg and py). Again, the amplitude
difference is caused by prosodic effects. Notice that the frequency components are quite
similar, since the preceding phonemes are either unvoiced or contain similar frequency

components.

10
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Figure 2.2: Spectrogram of the Word "recognition”

The time based spectrogram shows frequency intensity represented by gray shades;
the darker the shade, the higher the intensity. The word has been segmented into
phonemes (1 - 10). Phonemes 4 and 9 are the same, as are 6 and 10.

Note the similarities and differences between them.

2.6 Summary

Even with the features of speech sounds defined, the task of speech recognition is not
complete, as has been shown in countless attempts at speech recognition over the past
forty years. There is still too much information in the speech waveform, and the reliable
detection of information units is too slow. Furthermore, the effects of prosody,
coarticulation, and anticipation cause nonlinear disturbances in the waveform. The next
chapter provides biological (and psychological) background that can be used to eliminate

unnecessary information from the speech waveform.
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CHAPTER 3
BIOLOGICAL INFLUENCES

3.1 Structure of the Ear

The ear is a mechanical transducer that converts pressure into electrical impulses.
The human ear consists of three distinct parts: the outer ear, the middle ear, and the inner
ear. The outer ear is responsible for collecting sound waves and concentrating them onto
the eardrum. The middle ear acts as a mechanical amplifier. Due to the compressibility
of air, only a small force is necessary to cause the eardrum to vibrate. As the eardrum
vibrates, the bones of the middle ear move, exerting over thirty times as much pressure on
the fluid filled inner ear. The main organ of hearing is housed inside the cochlea. The
cochlea is a spiral shaped cone that is divided into two main sections by the basilar
membrane. The bottom half is called the scala tympani and ends at the round window.
The top half, called the scala vestibuli, is connected to the ossicles, the bones in the
middle ear, by the oval window. The scala vestibuli is further divided into two parts; the
lower half, the scala media, contains the primary organ of hearing, the organ of Corti.
The organ of Corti contains 3,000 inner cilia that raise it above the basilar membrane and
20,000 outer cilia that support the tectorial membrane. At the base of the hair cells are
nerve fibers which form the cochlear nerve. The connection between nerve fibers and
hair cells is not one-to-one. Figure 3.1 shows the three parts of the ear and a view of each
section of the cochlea.

Pressure exerted by the ossicles on the oval window causes the basilar membrane to
bulge into the scala tympani. The organ of Corti is supported by two stiff rods in a
triangular configuration that cause it to rotate towards the center of the scala vestibuli

rather than bulging into the scala tympani. This rotation causes the cilia lining the organ

12



of Corti to be bent by the shearing force of the tectorial membrane. The nerves connected

to the base of the cilia, excited by this bending motion, send impulses to the brain.

Window. Hair Cells in
Organ of Corti

Path of High Path of Low
Round Frequency Sounds Frequency Sounds
Stapes W'Oléln Path of Middle

? neow Frequency Sounds

Figure 3.1: The Ear
The path of sound waves as they enter the ear, are transmitted through
the middle ear, and pass through the cochlea (shown uncoiled).

The impulses sent to the brain encode both amplitude and frequency information.
Amplitude is detected by the amount of bending in the cilia, while frequency is
determined by which cilia move. The basilar membrane changes stiffness from one end
of the cochlea to the other. Therefore, high frequencies tend to cause vibration only in the
front end of the basilar membrane, middle frequencies in the front and middle (stronger),
and low frequencies all over, with the strongest occurring towards the tip. Using this
information, the brain can determine a sound's frequency. The human ear is generally
capable of detecting frequencies in the range of 16 to 20,000 Hertz, although sensitivity is
logarithmically distributed.

Experiments have shown that humans are largely phase insensitive. The basilar
membrane is only deformed when the stapes pushes on the oval window, and thus very
little information is available to the brain to determine a waveform's phase. Applying this
fact to speech recognition algorithms can reduce the amount of data in the encoded

waveform by half.
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At the initial onset of a sound, the firing rate of auditory nerves is highest. However,
as time passes, the discharge rate will decay to a steady-state, an effect called adaptation.
Initial adaptation, known as rapid adaptation, is caused by a refractory property of the
nerve fibers.!0 The slower adaptation is caused by a depletion of neurotransmitters. For
low frequency sounds, the nerves tend to fire in phase; however, for high frequencies,
they fire in integral multiples of the period. This difference occurs because a neuron can
only fire several hundred times per second, since it uses a chemical process to rebuild the
electrical differential after firing. After adaptation, a change in fundamental frequency
will only be noticeable if the amount of change is at least +0.5% of the fundamental
frequency. Changes in formant frequency are noticeable only if they are at least +5% of

the formant frequency.

3.2 Infant Language Acquisition

Infants are able to acquire language without training. They build a lexicon through
exposure only. This ability is of extreme importance to machine speech recognition.
Through this feat alone, the ability to perform speech recognition can be proven. If
infants were born with a lexicon, it might not be possible for a machine to recognize
speech. The inborn lexicon could be used in a top-down process, using semantic and
linguistic information to predict the speech waveform. If such information were required
for speech recognition, then isolated word recognition would not be possible since no
such information would be present. This is not to say that such information is not used,
but rather that the information is used in an auxiliary process to help recognize more
difficult waveforms and to provide context to a deciphered waveform. Since the lexicon

is acquired through repeated exposure, the infant must use a bottom-up strategy.

10 Waibel, pp. 101 - 102.
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At as early as four days old, infants are able to differentiate between speech and
music. By four months, infants can segment and recognize speech. The key to lexicon
acquisition is the inborn ability to segment the speech waveform. Segmentation is the
key feature of the bottom-up processing model. Segmentation involves identifying word
onset, dividing the word into syllables as they are presented, and identifying word
conclusion. This type of serial segmentation is incredibly powerful, and is perhaps the
optimal solution to one of speech recognition's fundamental and more difficult problems.
Once segmented, prosodic and syllabic analysis are performed. Prosody aids in
segmentation and provides context sensitive information through prominence, intonation,
and melody. Note that syllabic was chosen over other segmentation units. Psychology
has shown that infants segment speech sounds into units that are basically syllabic in
nature.!!

Prosody comprises all the attributes of speech that are not part of the syllabic
features.!? At this point in time prosody is a uniquely human feature; attempts have been
made to model prosody, but much research remains before accurate models can be
created. The distinction between prosodic and syllabic features is quite important. If a
child had to learn a new word for each type of intonation, the normal vocabulary would
explode from 20,000 commonly used words to infinite variations. In order to acquire the
lexicon, the child must separate prosodic information, identifying the word using only
syllabic information. This means that speech can be recognized (not necessarily
understood) without prosodic information. There may be cases where mistakes are made
due to lack of context, but for the majority of cases, isolated word recognition is quite
reliable. Prosodic effects are nonlinear and affect the speech waveform on many levels.
They are involved in the anticipation and coarticulation effects as well as in emotional

and stress-related effects. However, it is possible to remove them as infants have proven.

11 Altmann, pp. 240 - 244.
12 ARPA, p. 315.
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Such a removal would drastically simplify the speech waveform and reduce the amount
of information a speech recognition system must process.

At this stage, word matching is possible against entries already present in the
lexicon. Assuming that the word exists in the lexicon, a match will help to reinforce or
verify the segmentation and can also help identify word boundaries. Matches also help
reinforce entries in the lexicon. Entries that have not been accessed for long periods of
time take longer to find, if they are found at all. The ability to forget is a concept that has
not been captured by many computer algorithms but is uniquely suited to dynamic
language acquisition. If a match is not found, either the speech waveform was improperly
segmented or the word is new. When building a new lexicon, most unknown words are
new and should be added to the lexicon. After a certain age (around 8), the segmentation
process has matured and excludes certain structures. This effect is manifested by
difficulties in learning new languages which involve different syllabic units. Another
effect is an increasing resistance to learning new words.

While the ability to segment speech waveforms is present at birth, the process is
modified by experience. The question of genetics vs. environment in this case is clear.
Humans are genetically endowed to segment incoming speech waveforms, but if these are
not provided in the environment, the ability is lost. This environmental adaptation aids in
increasing the efficiency and reliability of the segmentation process. If a syllabic unit
never occurs in the environment, time is wasted searching. More importantly, if the unit
is similar to other "neighboring" units, possible confusion can be avoided, increasing the
probability of correct identification even in the presence of noise.

Finally, prosodic information, semantics, and syntax are used to remove ambiguities.
However, it is important to note that this information is not vital to speech recognition,
only to speech understanding. Semantics and syntax are misused in everyday situations,
but in most cases, the spoken words are still understood. Meaning often takes longer to

sort out.
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3.3 The Brain

The brain is the most complex organ in the body. It contains billions of neurons,
each of which is capable of connecting to multitudes of other neurons through synapses.
A synapse serves as a connection between the axon of one neuron and the dendrite of
another. The brain remains the biggest mystery in human physiology. How the lexicon
is stored in the brain is unknown. Some theories maintain that words are stored in static
locations, while other theories hypothesize that memory, in general, is dynamic. While
how memory is stored and accessed is unknown, it is known that language processing
occurs in a specific region of the brain. This region of the brain accesses the lexicon in
parallel.

Recent studies have shown that word identification is performed on a syllable by
syllable basis.!> When the initial syllable is presented to the language center, a parallel
search is initiated for any words with matching initial syllables. Matching words are
activated by the search and further comparison is allowed; words that do not match are
excluded from further analysis. Studies have shown that even rthyming words that differ
only in the first phoneme are excluded from further analysis. It is currently unclear
whether subsequent syllables must match or if mistakes are allowed. However, recent
evidence suggests that only exact matches are allowed and that higher level processing
involving semantics and syntax is used to correct mistakes made in initial segmentation.

Cognitive psychology provides further information about the brain through indirect
experimentation. To test the effect of word priming, subjects are instructed to listen
carefully to words presented to the right ear and to totally disregard the left ear. Subjects
are further instructed to write down words presented to the right ear. During the coarse of

the experiment, the subject is presented with several ambiguous words such as "sea" and

13 Altmann, pp. 150 - 151.

17



n n

see". Just before these words are presented to the right ear, a primer is presented to the
left ear such as "ocean." While subjects report that they did not hear the primer, they
repeatedly choose the associated word.!* These results reveal the inner workings of
prosody and other higher order processing going on in the brain's language center. While
a word can be identified without additional information, the context provided can make a

difference in continuous speech recognition and speech understanding.

3.4 Sound Production

The human speech production system consists of a primary acoustic tube, the vocal
tract, and sometimes an auxiliary acoustic tube, the nasal cavity. The acoustic tube starts
with the vocal cords and ends with the lips. The shape of the tube is determined by the
position of the velum, tongue, jaw, and lips.!> A cross-section of the human vocal
apparatus is shown in Figure 3.2. The shape of the vocal tract at any given time
determines the resonant frequencies or formants that create an envelope around the
resultant sound. "For an adult male speaker, the fundamental frequency typically ranges
from 100 to 160 Hz ... for an adult female, the average fundamental frequency is nearly
twice as great."16

Sound is produced by exciting the acoustic tube with an appropriate source. For
voiced sounds, the vocal cords vibrate, producing quasi-periodic pulses of air pressure.
Unvoiced sounds do not use the vocal cords and are best characterized as random noise.
For fricatives, the vocal tract is constricted at some point, causing a turbulent air flow
which creates the sound. Plosives rely on a build up of air at the lips, which is released in

a rush.

14 Massey.
15 Oppenheim, pp. 119 - 120.
16 Cooper, p. 7.
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Before the first sound is uttered, the concept being expressed is coded into language.
Generally, speech is a continuous operation with multiple words spoken in a single
breath. As the brain stimulates the vocal system, it anticipates word boundaries, merging
or slurring them together. Depending on many factors including emotion and rate of
speech, the boundaries between words can be lost altogether. In some cases, phonemes or

syllables within a word are merged; this phenomenon is called coarticulation.

Soft palate

Vocal Cords

Figure 3.2: Cross-section of the Human Vocal Apparatus
The vocal tract can be viewed as an acoustic tube starting at
the vocal cords and terminating at the lips. The nasal cavity

provides an auxiliary tube in some cases.

Not all sounds are appropriate for language. The vocal tract is a nonlinear system.
For many sounds, slight changes in the vocal tract and tongue produce large changes in
acoustic output. One of the fundamental properties discovered by speech researchers
over the years is that no two speech waveforms are exactly the same. This is true even
when the same person is talking. The problem is that a speaker makes small errors in

reaching articulatory targets. Language psychology hypothesizes that languages tend to
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select areas of acoustic stability, called plateau regions, for sounds. In plateau regions,
small errors produce minimal differences in the resultant sound.!” This hypothesis has
been verified for vowels.!® Future studies could provide important information for the

development of speech recognition systems.

3.5 Summary

Information gained from human physiology and psychology can aid in the
development of machine speech recognizers. Studies of the ear shows that the brain
receives information about the speech waveform in both time-amplitude and time-
frequency forms. The ear is also phase insensitive so the speech recognition system can
reduce the amount of data needed to encode the speech waveform by half. Small changes
in frequency are not noticeable; furthermore, speech tends to concentrate in plateau
regions where small errors in production have minimal effects on the resultant sounds.
These facts add credence to the use of fuzzy logic to perform speech recognition, as will
be further explained in Chapters 5 and 6.

Studies of the brain show that word processing is a serial process, while word access
is a parallel process. Again, the fuzzy paradigm seems appropriate since fuzzy rules are
evaluated in parallel, while word processing would always be a serial process.
Furthermore, initial syllable identification is paramount, as it directs the entire search.
This information is useful for continuous speech recognition systems, which can perform
similar searches. However, for isolated speech recognition, prosodic information can be
ignored. Without prosodic information, the recognizer has no way to correct mistakes
made in initial syllable identification. Therefore, the recognizer must check words that

differ in initial syllable.

17 Lea, p. 46.
18 Cooper, pp. 9 - 10.
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By examining the human auditory system, several insights have been gained that
allow substantial reductions in the size of the encoded waveform. For example, the
human auditory system can hear sounds from 16 Hz to 20 kHz, but most of the
information necessary for intelligible speech is contained below 3 kHz. Therefore,
speech can be encoded with a minimum sampling rate of 6 kHz. These insights also aid
in simplifying the algorithms used to implement a speech recognition system. The next
chapter reviews several classical speech recognition systems and presents several

algorithms that extract features from the speech waveform.
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CHAPTER 4
SPEECH RECOGNITION MODELS

4.1 The Early Days

The following history is a summary of Wayne Lea's "History of Speech
Recognition."!” The earliest known speech recognition system was a toy dog, "Radio
Rex." The dog would jump when it detected its name being spoken. The detection
system was extremely simple, and the dog would jump for many other words. The
development of the spectrograph in the late 1930s prompted more serious attempts. In
1950, Dreyfus-Graf developed an analog filter-based system which separated a waveform
into six frequency bands. The resulting signals controlled a device similar to an
oscilloscope. As the signals changed, a pattern was drawn on the display.

The first complete recognition system was developed at Bell Laboratories in 1952.
The system was capable of recognizing the ten digits [0, 9]. This was an analog system
that performed simple pattern matching against templates for each of the digits.
Matching was performed based on two inputs: a frequency cut and a fundamental
frequency estimation. The frequency cut was performed by separating the frequency
spectrum into two bands, above and below 900 Hz. The fundamental frequency was
estimated by counting the number of zero-crossings. The system boasted an impressive
97% accuracy for a trained speaker. The first phoneme based recognition system,
Audrey, was developed in 1958. An incoming signal was segmented into phonetic units
by searching for specific stored spectral patterns. This system also boasted near perfect

accuracy for a trained speaker.

19 Lea, pp. 59 - 77.
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4.2 Computer Based Speech Recognition

The first use of a digital computer for speech recognition occurred in 1960. Denes
and Matthews introduced the concept of time normalization. Time normalization allows
waveforms of differing lengths to be automatically compressed or expanded to match the
stored template. The use of time normalization brought speech recognition one step
closer to speaker independence. The use of digital computers also allowed researchers to
experiment with larger vocabularies and more difficult recognition algorithms.

One of the biggest movements in speech recognition occurred in 1971 when ARPA
commissioned the Speech Understanding Research (SUR) project. The project specified
the development of a system that could accurately (over 90%) recognize continuous
speech from multiple speakers. Speech was to be constrained to a specific grammar using
a 1000 word vocabulary. When the project was completed in 1976, one system, HARPY,
developed at Carnegie-Mellon University, met or exceeded all the specifications.
HARPY accepted sentences from 3 male and 2 female speakers, had a vocabulary of
1011 words, required only 20 training sentences per speaker, and sustained 95% semantic
accuracy even in relatively noisy environments. Developments from the ARPA SUR
project spawned a multitude of new techniques and brought serious attention to the field

of speech recognition.

4.3 Speech Recognition Techniques

Models of speech recognition can be divided into four primary categories: acoustic
signals, speech production, sensory reception, and speech perception. The first category
views the speech waveform as a general acoustic signal. Recognition is achieved by
applying digital signal processing techniques to identify the input. Speech production
models the human vocal system in order to determine how the signal was produced and

thereby identify the input. The sensory reception viewpoint suggests recognition through
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biological models of the ear, nervous system, and auditory sections of the brain. Finally,
the speech perception model relies on psychological information to extract important
features and to categorize the input. Each model comes from a particular scientific
discipline.2® The most successful speech recognition systems employ techniques derived
from all four models. However, the majority of current techniques originate from the
acoustic signal and speech production models.

The speech waveform is nonlinear and variant. However, over short periods of time
(= 10 to 30 ms), the waveform remains roughly invariant. Techniques for dealing with
the waveform over short periods of time can be broken into two types: time domain and
frequency domain. Time domain analyses view the speech waveform as a function of
time and amplitude. Frequency domain analyses view the speech waveform as a function
of time and frequency. Using these two representations, the relevant features in the
speech waveform can be isolated and the word identified.

The amplitude of the speech waveform for voiced speech is much greater than for
unvoiced speech. Therefore, the maximum peak amplitude during an interval can be used
to discern between voiced and unvoiced speech. The maximum peak amplitude is often
taken as a simple indication of the amplitude of the entire sample. The time between
corresponding peaks is equal to the fundamental period (or pitch period) for voiced
speech. Using this value, an estimate for the fundamental frequency or pitch of the
interval can be computed.

The problem with peak measurements is that there may be several similar peaks in a
given interval. A better estimate for the fundamental period of voiced speech can be
obtained by counting zero crossings. A zero crossing occurs when:

sign [x(n)] # sign [x(n+1)]

20 Lea, p. 42.
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where x(n) and x(n+1) are samples in the current interval. After counting the number of
zero crossings in a given interval, the fundamental frequency f, can be estimated by:
nc
ST
where n; is the number of zero crossings and t is the time interval in seconds. For an
interval of 10 ms the minimum frequency that can be detected is 50 Hz, for an interval of
30 ms the minimum frequency is approximately 16 Hz. Thus, the interval period
determines the accuracy of a given estimate; however, the signal sampling rate determines
the ultimate resolution of the zero crossing measurements.

Zero crossings can also be used to discern between voiced and unvoiced speech.
Voiced speech tends to be concentrated below 3 kHz, while unvoiced speech, especially
fricatives, are generally above 3 kHz. Therefore, when the zero crossing rate is high, the
implication is unvoiced; if the zero crossing rate is low, the implication is voiced.

Zero crossing measurements have been used in many speech recognition applications
due to their simple implementation and speed. However, zero crossing is especially
susceptible to noise, dc offset, and 60 Hz hum. Low pass filtering is usually necessary to
remove frequencies below 60 Hz before counting zero crossings.2! The fundamental
frequency of voiced sounds is affected by prosodic information such as stress and
intonation as well as syntactic information. The effects of this additional information can
cause problems with the estimate derived by zero crossing measurements.

Using an energy representation eliminates many of the problems introduced by
prosodic information. For a varying signal such as speech, the energy of the signal can be
defined as the convolution:

E(ny= Y. [w(m)x(n—m)P

or

E(n)= Z|w(m)x(n-m)|

21 Waibel, p. 54.
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where w(m) is a window function, the current interval contains N samples, and x(n)
denotes the sample value at interval n. The window function weights the samples so that
past samples have less importance than more recent samples. Picking an appropriate
window function helps reduce variance in the energy calculation over time. The second
form of the equation reduces the measurement's sensitivity to amplitude levels.

Like peak and zero crossing measurements, energy measurements can be used to
separate voiced speech from unvoiced speech. High values imply voiced speech while
low values imply unvoiced speech. Also, when the quality of the speech waveform is
high, the energy measurement can be used to separate unvoiced speech from silence.

Short-time autocorrelation analysis can be used to show structure in the speech
waveform and also to estimate the pitch period. Short-time autocorrelation is defined

as:?2?

¢@,(m) :%Ii:lx(n+l)x(n+m+l)

n=0
where [ is the beginning of the interval, m denotes the lag (0 < m < M), and N' is either
N if data outside the segment is to be used or N-m if only data within the segment is to be
used. In the latter case, a weighting function is often used to smooth the interval ends to
zero. Autocorrelation identifies periodicity in the speech waveform; therefore, the
interval period should be increased to at least twice the period used for other techniques
(20 ms to 60 ms).

When estimating the pitch period, recent research has shown that removing the
middle of the waveform helps reduce the sample-to-sample correlation of the signal. This
nonlinear technique, called clipping, can be efficiently performed by shifting the samples
to remove lower amplitude information.?3

The most common frequency domain techniques include the Fast Fourier Transform

(FFT) and Linear Predictive Coding (LPC). The Fourier Transform converts a time-

22 Waibel, pp. 54 - 55.
23 Waibel, pp. 54 - 55.
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amplitude signal to a time-frequency signal. The FFT is a computationally efficient
implementation of the discrete Fourier Transform. While more computationally efficient
than a naive implementation, even the best FFT implementations require n logy(n)
computations.

LPC is based on a model of the vocal tract. LPC assumes "that a sample of speech
can be approximated by a linear combination of the past p speech samples."?* By
minimizing the difference between the actual signal and the predicted values, the
coefficients of the predictor can be adjusted to accurately reflect the sample. If the signal

X, 1s approximated by:
N
| !
X, = zakxn—k
k=1

then the total squared error is given by:
n—1
E=) (x,~x)
n=N

The autocorrelation function is given by:
N—‘n

1 \
R =—>» xx
n N ; 1 l+‘n‘

The linear prediction coefficients can be computed using the recursive algorithm

shown below.25 Note that the algorithm requires N2 computations.

24 Waibel, p. 60.
25 Chen, pp. 94 - 95.
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Once the spectrum has been obtained, it can be analyzed to determine the formant
frequencies and the pitch of the speech waveform. While analyses performed in the
frequency domain are more accurate than those performed in the time domain, the
computational overhead is quite high even by today's standards. Real-time speech
processing is not possible on a personal computer without specialized hardware.
However, in the coming years, it will be possible to take advantage of these techniques

with virtually no performance degradation.

4.4 Time Normalization

Given two representations of the same spoken word by the same speaker under
similar conditions, it is highly probable that they will be of different lengths. The main
problem is that variations in speaking rate cause nonlinear changes on the time axis.
Dynamic Programming (DP) is one technique that attempts to optimally eliminate timing
differences between two waveforms. The algorithm works by warping one waveform
onto the axis of the other. However, rather than merely stretching or compressing the
waveform, the algorithm attempts to match the waveforms so that similarities are

maintained and time aligned.
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In the classic algorithm, one of the waveforms is warped onto the time axis of the
other. However, recent research has shown that mapping both waveforms onto a new
common axis performs much better. The flowchart for symmetric dynamic programming
is shown in Figure 4.1 for two waveforms, A and B, having I and J samples

respectively.26

g1, h=2d(1, 1) |

i+=1

no

j=1

yes

ID(A, B) = g(I, J)/(I+))]

—‘ DP-equation ‘ Sto

Figure 4.1: Symmetric Dynamic Programming Flowchart
Symmetric dynamic programming creates a common time axis
for two waveforms with differing time axes.

The performance of the DP-equation for symmetric dynamic programming depends
on the chosen slope restriction. The slope condition ensures that the warping function has
an even gradient. The slope restriction also ensures that the algorithm does not focus on
similarities that are outside a window of usefulness. Experimental results show a slope

restriction of one to be optimal. Therefore, the DP-equation is:27

26 Waibel, pp. 159 - 163.
27 Waibel, pp. 163.
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g(l_19J_2)+2d(la.]_l)+d(la.])
g(loj) = min g(l - 19J_2) +2d(la.])
g(l - 27.] - 1) +2d(l - 17.]) +d(la.])

where the distance between any two samples is given by:

d(i.j)=la, 5|
The DP-equation g(i, j) involves picking the path with the lowest distance and can
therefore be viewed as a gradient. With a slope restriction of one, three paths must be
examined as shown in Figure 4.2. The slope restriction requires that the function step at
most once in the horizontal or vertical directions before stepping orthogonally or

diagonally.

d@ij-1) | d(j)

8(-2,j-D)g(i-1,j-1),/d(i-1,]

C —

J o(i-1,j-2)

i —

Figure 4.2: Gradient Paths
When the slope restriction is set to one, three paths
must be examined to find the minimum gradient.

The total distance between the waveforms, A and B, is given at the end of the
algorithm as D (A, B). This distance can be used directly as a comparison between the
input waveform and a stored template. Alternatively, the common axis representation of

the waveform after warping can be used for further processing, such as feature extraction.

4.5 Summary
The choice of representation for the speech waveform depends on three factors:
processing complexity, information rate, and flexibility. Time domain based

representations are simple, fast, and fairly flexible, but lack accuracy for processes not
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involving time-normalized template matching. Frequency domain representations are
complex and slow but extremely flexible and accurate. As the size of a recognizer's
vocabulary grows, the potential for confusion increases. Therefore, large vocabulary
recognizers may require frequency domain representations to achieve adequate accuracy.
To achieve fast results, these systems need specialized hardware to quickly perform the
requisite frequency transforms and to handle the increased processing demands of a larger
vocabulary. Restricting analysis to the time domain allows speech processing to be

achieved in real time on comparatively simple hardware.
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CHAPTER 5
FUZZY LOGIC

5.1 Background

Dealing with uncertainty has caused a paradigm shift in science. In the old
paradigm, uncertainty was considered unfavorable; science strove for precision and
accuracy. However, with the development of molecular physics, uncertainty became an
issue that could not be removed. The ability to measure an event or object had a limit
that could not be overcome. Therefore, it became necessary to develop new techniques to
deal with uncertainty. As these techniques were developed, their usefulness in other
fields became apparent.

Fuzzy set theory and fuzzy logic were conceived in 1965 by Lofti Zadeh as a way of
allowing uncertainty or vagueness to be represented mathematically. Fuzzy sets are not
the first attempt to deal with uncertainty mathematically. Probability theory is capable of
dealing with statistical uncertainty, and Aristotelian two-valued logic has been extended

to multi-valued logics; however, fuzzy logic is perhaps the most flexible.28

5.2 Fuzzy Sets

Fuzzy sets are a super-set of classical sets. Each element in a fuzzy set is associated
with a real number which represents the degree of membership of the element in the set.
Fuzzy sets are usually expressed as a set of elements having degrees of membership or
truth values in the closed unit interval [0, 1]. Fuzzy sets violate several key axioms of

Aristotelian sets: the law of the excluded middle and the law of contradiction. This

28 Klir, 217 - 220.
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means that an element of a fuzzy set can simultaneously be both a member and a
nonmember of the set. When all elements in a set have either complete membership or
complete nonmembership, the fuzzy set reduces to a classical or crisp set.

Fuzzy sets are quite different from statistical models. Probabilities represent the
likelihood of a certain outcome given a distribution of past events. Given a probable
outcome, there is still a chance that the opposite will occur. Furthermore, after the event
has occurred, its probability changes to either 100% or 0% depending on the observed
outcome. The elements of a fuzzy set, on the other hand, represent the applicability of the
element to the set. While the element may not be totally representative of the set, it at
least has some similarity to the concept the set represents. Furthermore, this relationship
does not change with time; fuzziness is an intrinsic property of the element. The
uncertainty in probability comes from the randomness of the system being analyzed,
while in a fuzzy set, it comes from the information source or the inability to completely
specify a process or model.

Every fuzzy set consists of three parts: a horizontal domain axis which specifies the
set's population, a vertical membership axis which specifies each element's degree of
membership, and the surface itself which provides a one-to-one connection between each
element and a degree of membership. Fuzzy sets also have a context that indicates how
they are meant to be interpreted and utilized. For example, Figure 5.1 shows a simple
fuzzy set for the concept 7all. This set would not be a good representation if the context
was Skyscrapers, but is a good representation of American Women over 20. Women 4
feet or less have no membership in the set 7all while women over 6 feet have total
membership. To determine a specific membership, the person's height is found on the
horizontal axis, followed to the surface function, and then the degree of membership, p

(x), is read from the vertical axis.
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u(x)

4 5% 7
Height

Figure 5.1: A Fuzzy Set Representing Tall
The concept tall represented as a fuzzy set for a specific context. Anyone
below 4 feet tall has no membership in the set tall, while anyone over 6 feet
has total membership. Heights in between are proportionally distributed.

The idea of a fuzzy set representing a concept and having a context is further
expanded by linguistic variables. A linguistic variable is assigned to a fuzzy region, a set
of fuzzy sets, that represents a complete concept. Figure 5.2 shows an example for the
concept Height. The variable consists of three fuzzy sets: Short, Medium, and Tall. As
with fuzzy sets, context plays a large part in the interpretation of a linguistic variable.
The horizontal axis specifies the base variable which is a crisp interval. For a given base
value, the degree of membership in each fuzzy set can be determined. This process is

called fuzzification.

Short Medium Tall
H(x)
0 4' 5' 6'
Height

Figure 5.2: A Linguistic Variable Representing Height
Linguistic variables are assigned to fuzzy sets representing a single concept.
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5.3 Fuzzy Logic

Fuzzy logic is a super-set of classical logic. "Logic is the study of the methods and
principles of reasoning in all its possible forms. Classical logic deals with propositions
that are required to be either true or false."?® Fuzzy logic extends the membership of
propositions to include a graded membership between no membership, false, and
complete membership, true. In the case where a proposition has either no membership or
complete membership, fuzzy logic reduces to classical logic.

Fuzzy propositions are created using individual fuzzy sets or groups of fuzzy sets.
The power of fuzzy logic comes from its ability to represent concepts lacking clearly
defined boundaries. These concepts are generally expressed as linguistic variables.
Instead of developing propositions which depend on the mathematical variables, fuzzy
propositions use linguistic variables to express the relationship between concepts. Fuzzy
propositions allow systems to be created that reason in a more human fashion and are,
therefore, easier to understand and maintain. Due to the direct correlation between a
linguistic expression and the system being controlled, rules can be elicited from an expert
in vague linguistic terms that might be impossible to represent in mathematical form. For
example, a rule in a system to control temperature might read:

If TEMPERATURE is WARM and HUMIDITY is HIGH
then AIR CONDITIONING is HIGH

This rule is quite easy to understand in the context of a home cooling system. A
system of such rules might be used to maintain the temperature in a structure while
minimizing the amount of energy used. Changes in temperature and humidity cause
gradual changes in the amount of air conditioning that must be used to maintain the
desired room temperature. Also, it is not necessary to fully understand the theory of heat

transfer or to know much about the physical structure of the room being controlled.

29 Klir, p. 212.
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Fuzzy logic is capable of dealing with highly nonlinear systems, time varying processes,
or noisy environments. The ultimate goal of fuzzy logic is to provide a framework for
reasoning about imprecise propositions. Such reasoning is called approximate reasoning

and is used to create fuzzy control systems.

5.4 Fuzzy Systems

A fuzzy system consists of a fuzzification subsystem, a fuzzy inference engine, a
fuzzy rule base, and a defuzzification subsystem. Figure 5.3 shows a general fuzzy
control system.3? Given a set of crisp inputs that represent the process' current state, the
fuzzification subsystem converts them into appropriate fuzzy sets and determines their
degree of membership in those sets. Note that a given input may simultaneously be a
member of more than one set within a single fuzzy region. The fuzzy inputs are then used
by the inference engine to determine the fuzzy outputs. The inference engine interacts
with the rule base and uses the inputs to determine which rules are applicable. The rules
are independent, and, therefore, may be evaluated in parallel. The outputs are a set of
fuzzy sets defined on the universe of possible outputs. These fuzzy outputs are
defuzzified to generate the crisp outputs used to control the process. Many methods exist
for defuzzification, but the most popular include: centroid, center of maxima, and mean

of maxima.

30 Klir, p. 331.
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Figure 5.3: A General Fuzzy Controller
Every fuzzy controller consists of at least four major subsystems.
Notice that the Fuzzy Inference Engine is the only subsystem to interact
with the Fuzzy Rule Base. This interaction can occur in parallel.

5.5 Summary

Fuzzy logic allows highly nonlinear, poorly understood, or mathematically complex
systems to be modeled reliably and efficiently. Furthermore, fuzzy logic deals well with
uncertain and noisy data. These characteristics suggest that fuzzy logic might be an
effective tool for speech recognition.

One of the strengths of fuzzy systems is their ability to express a confidence in the
reasoning results. Recent studies have shown that fuzzy systems and neural networks are
both part of a class of universal approximators of continuous functions. This similarity
means that a fuzzy system can be replaced by some form of neural network and vice
versa.3!  While much success has been gained by using neural networks in speech
recognition, they are unable to express a confidence in the results or explain how the
results were generated. Neural networks are generally viewed as black boxes, although
current research is attempting to generate techniques for tracing the reasoning process.

Fuzzy systems, on the other hand, express a level of confidence in the output by the

31 Klir, pp. 344 - 349.
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degree of membership of the fuzzy outputs. The reasoning that generated the outputs is
also available by examining the active rules. The next chapter describes a fuzzy based
system that takes advantage of the characteristics of fuzzy systems to perform speech

recognition.
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CHAPTER 6
ISOLATED DIGIT RECOGNITION

6.1 Digit Waveforms

The majority of isolated word recognizers use a process called template matching to
perform recognition. Template matching involves gathering waveforms for each word in
the vocabulary. Each template is associated with its name. When an unknown waveform
is presented to the system, it is compared to each template to find the best match. If a
match is found, that template's name is assigned to the unknown waveform.

Although the recognition system designed for this thesis can perform general word
recognition, it was designed primarily to perform isolated digit recognition. Each digit
can be categorized by the features discussed in sections 2.3 and 2.4. Since the digits are
relatively short, the unit of recognition is a word. However, examining the phonemes and
syllables can provide important information.

Table 6.1 shows the phonemes and syllables in each digit. Several possible
recognition problems are apparent from the phoneme representation. Digits six and seven
and digits four and five start with the same phoneme which increases the probability of
confusion between the waveforms. The digits two and three start with a similar
phoneme; and since two is quite short, it may be easily confused with three. The digits
one, seven, and nine end with the same phoneme which may make them likely candidates
for confusion. The digits zero and seven are the only multi-syllable words. Since the
primary stress is on the initial syllable, they should both be easier to distinguish. Digits
zero and eight are the only truly unique words in the vocabulary and should therefore
have a much higher recognition rate. However, eight is an extremely short word, which

may cause problems.
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Number | Phoneme | Syllable
Zero zi'ro Z€ «TO
one wAn one
two tu two
three Ori three
four for four
five falv five
six slks six

seven sevon| seveen
eight et eight
nine naln nine

Table 6.1: Digit Representations
The digits 0 - 9 represented as phonemes and syllables.

6.2 Fuzzy Speech Recognizer

The system developed for this thesis uses a personal computer optionally equipped
with an 8-bit sound card. Waveforms are stored in the WAVE format using pulse coded
modulation (PCM). 8-bit PCM is a signed format with the minimum at Oh, midpoint at
80h, and maximum at FFh. The system reads in the templates for each digit at program
startup. After a digit is read, it is normalized so that its minimum is Oh and its maximum
is FFh. Normalization helps alleviate the effects of volume variation between samples.
Additional modifications, including thresholding, phase removal, and sub-sampling, will
be discussed in chapter 7.

Samples for recognition can be either read from a pre-recorded WAVE file or
recorded live using the sound card. To ensure consistent frequencies, samples are
recorded at the same sampling frequency as the templates. After recording is complete,

the system performs segmentation to isolate the word's beginning and ending. At this
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point, the modified waveform is stored in memory and may be played back to the speaker
to ensure that the sample has been correctly recorded and segmented.

After a sample has been loaded or recorded, its time-amplitude graph is displayed at
the top of the window. During the analysis process, the unknown waveform is displayed
at the top of the window while the template it is currently being compared against is
displayed at the bottom, as shown in Figure 6.1. A status bar shows the progress for each
template. After the analysis is complete, the result (categorization), is displayed above

the unknown waveform.

=08 1 E Hercog 1 | .

| File Sound Help

Waveform is Unknowm Categorization

N Unknown Waveform

/N

Template Waveform

Figure 6.1: Voice Recognition System Window
The main window for the voice recognition system during analysis.
The status window has been hidden to completely show both waveforms.

6.3 Symmetric Dynamic Programming

As discussed in section 4.4, some form of time normalization is necessary for general
word recognition. Symmetric dynamic programming was chosen due to is past success.
While finding the best time alignment between a template and an unknown, dynamic
programming also isolates and matches features. The implementation employed for this

thesis used dynamic programming on time-amplitude values only; no spectral analysis
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was performed. While neglecting spectral information limits the overall accuracy of the
recognition process, dynamic programming without specialized hardware is too time
consuming to perform additional complex analysis such as Fourier analysis or Linear
Predictive Coding.

Dynamic programming has a complexity of O(n2), which can cause unreasonable
demands on both processing time and system memory. Fortunately, several constraints
can be employed to reduce the complexity. By providing a slope constraint, the search
area can be limited. Based on work by Sakoe and Chiba, an optimal slope constraint of
one was chosen.’? Dynamic programming can be viewed graphically as a plot of the
template waveform (a) vs. the unknown waveform (b). The warping function defines the
optimal path from the starting point, which is always (0, 0), to the ending point, (A-1, B-
1) where A and B are the lengths of the template and the unknown waveforms
respectively. When the two waveforms are exactly the same, the warping function
becomes the diagonal line b = a.

Since the starting and ending points are fixed and the slope is constrained, it is

possible to define the area of all possible solutions. The top and left sides are bounded

by:
y=§+(B—l)—@ or x=2(—(B-1)HA-2)
y=2x+1
The bottom and right sides are bounded by:
y=2x+(B-2)-2(A-1)  or x=%'2)+(/1—1)
_(x—1)
4 2

Figure 6.2 shows the possible paths that may be taken by the warping function.
However, due to the recursive nature of the dynamic programming algorithm, the left and

bottom boundaries cannot be utilized since values outside their boundaries may be needed

32 Waibel, pp. 159 - 165.
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for calculating values within the area of possible solutions. Notice that the top and right
boundaries correspond to starting at the end point and following the lines of maximum
and minimum slope towards the start point. Similarly, the bottom and left boundaries
correspond to following the lines of maximum and minimum slope from the starting

point and moving towards the end point.

B

11 / |
10 /
9 /

8 /
7 /

6 7 /
sl 1/ /

4 /
s/

2 /

117

0 /

0123456 728910111213 A

Figure 6.2: Area Searched by Dynamic Programming Algorithm
The four lines bound the region of all possible solutions. The gray
region shows the area that must be searched for possible solutions.

The DP-algorithm is perhaps best explained with an example. Figure 6.3 shows the

two waveforms to be normalized; waveform A has a length of 10, and waveform B has a

length of 15.
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Figure 6.3: Symmetric Dynamic Programming Example
The two waveforms A and B used in the example are shown.

The first step is to calculate the distance from each point in waveform A to each point in

shows these distance calculations.

waveform B. Table 6.2
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BVAJO|1]2[3]4]5]6]7[8]9
0 1J1[0]3

I 2|1 ]2]2

2 131211 [3]1

3 14[(3]0[4]2

4 121 ]2]12]0]2
5111031 ]1]3

6 J]O|]1]4]0]2]4]1
71211121210 2]1

8 141310(4]2]0[3]4
91103 [1]T1[3]0]1
10J0[1]4]0[2]4]1]0]2
11 O3] 11 ]3]0]1]1
12 2101211 ]12]0]1
13 112(3]1]60
14 4121

Table 6.2: Waveform Distance Matrix
Each cell contains the distance from a point on
waveform A to a point on waveform B.

The next step is to calculate the recursive gradients. Table 6.3 shows the gradient

calculations.
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BV\AJO|1]2|3[4[5]6|7][8]9
0 12(0]6

1 14]14]14]6

2 1651519

3 8|11 6 ]10]10

4 14[10] 81010

51214 7(10]11]15

6 10[4]18]7]9]18

7 14(21419]17]19]14

8 18|512(6]9]7]10

9 12854 |5]10[9]38
10101484712/ 8]9

11 316161912189
12 6 | 8|11[12] 8
13 10115 9 | 8
14 16] 9

Table 6.3: Waveform Gradient Matrix
Each cell contains the minimum gradient from a
point on waveform A to a point on waveform B.

The final step is to normalize the gradient at (A-1, B-1) = (9, 14) by dividing by A + B =
25. The final result, 0.36, is the best distance between the two waveforms.

The symmetric dynamic programming algorithm has been implemented in two
forms, a classical crisp form and a fuzzy form. The crisp form calculates the distance at
each step by taking the absolute magnitude of the difference between the amplitudes of
the two waveforms. The total distance measure between the two waveforms is then given
by the sum of these differences divided by the sum of the lengths of the waveforms. This
final normalization is necessary so that short waveforms and long waveforms have a
common distance measure. The best match is chosen by selecting the waveform with the

shortest total distance. The next section discusses the fuzzy implementation.
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6.4 Fuzzy Symmetric Dynamic Programming

The fuzzy implementation assumes that all waveforms contain uncertainty. This
uncertainty comes from speaker variation, waveform quantization, noise, and the inability
to completely specify the process of speech recognition. Each amplitude is therefore
represented as a fuzzy number. A fuzzy number may be viewed as a set of numbers
around a certain interval. For example, integers close to x can be represented by a fuzzy
set in which the closer a number is to x, the higher its membership in the fuzzy set. The
fuzzy set must be normal, since x must have maximum membership.

During the distance calculation, amplitudes are assumed to vary by some specified
amount from the measured values. Various values were tested, but a maximum of =8 was
experimentally determined to give the best results. Therefore, when the absolute
magnitude of the distance between two points is computed, it is adjusted to be a
maximum of 16 points closer. The minimum is 0. The membership function, shown in

Figure 6.4, is:

163—;“1+0.5 0<d<15
DOM =1 ,557 4
15<d <255
510

For distances below the fuzzy distance threshold, in this case 16, the degree of
membership is computed on the interval [0.5, 1]. For distances above the threshold, the
degree of membership linearly decreases to zero as the distance approaches the

maximum.
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Figure 6.4: Fuzzy Number Membership Function
Values closer to the actual value have a higher degree of
membership, while values further away have lower membership.

The membership of the total distance is the average of the degree of membership of
every point along the optimal path. The result of comparing each template to the
unknown waveform is a fuzzy set consisting of the set of templates and their degree of
membership, which represents the template's similarity to the unknown waveform. To
defuzzify the result and select the most likely category, the maximum degree of
membership is identified. Then the element from the set of maximum membership with

the minimum distance is selected as the best match.

6.4 Summary

Representing amplitude values as fuzzy numbers allows the speech recognition
system to deal with the uncertainty inherent in complex systems. In addition to improved
accuracy, the credibility of the solution can be quantified. The degree to which the
solution should be believed is expressed by its degree of membership. Choosing the
solution with a maximum degree of membership ensures that the solution is the best
possible. Additional requirements can be imposed to ignore solutions below a certain

threshold of credibility.
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The next chapter presents the results of tests using the system described in this
chapter. Tests under varying conditions, multiple speakers, and utilizing various
thresholds and values are presented. The source code for the system is presented in

Appendix A.
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CHAPTER 7
SYSTEM RESULTS

7.1 System Configuration

Multiple tests were conducted to determine the system's performance under varying
conditions. In each test, templates and samples were recorded using a low-cost
unidirectional microphone in a noisy environment. The sampling frequency was 6 kHz
with 8 bits per sample.

Initial tests were conducted to test the usefulness of removing a waveform's phase by
inverting all negative samples. While this procedure makes sense from a biological point
of view, the recognition system suffered decreased discrimination ability. Therefore, in
all further tests the waveform's phase was not removed.

Clipping procedures were also tested. Clipping is a nonlinear technique whereby
samples below a specified value are set to zero. Various values were tested up to a
quarter of the maximum amplitude, 32. Clipping was predicted to improve accuracy by
removing small low-volume variations in the waveform such as background noise and 60
Hz hum. However, results showed that the system again suffered from reduced
discrimination, so no further clipping was performed.

After recording a template or unknown waveform, the system performs segmentation
to isolate the word. Various threshold values used by the segmentation routine were
tested. The threshold maximum determines how loud a sample must be to indicate the
start or end of the word. When processing the waveform, the segmentation routine
searches for the first sample that exceeds the threshold. The threshold minimum

determines how loud a sample must be to considered part of the word. Once the
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threshold maximum is found, the routine searches backward until a sample below the

minimum is found. The isolated word is then normalized and stored in memory.

7.2 Initial Trial

The first full scale trial was performed using a trained male speaker. The threshold
maximum was set to 16, and the threshold minimum was set to 4. Template waveforms
for each of the ten digits were recorded and saved first. Then for each digit, ten sample
waveforms were recorded and saved. The system was then setup to analyze all 100
"unknown" waveforms using first the crisp classification algorithm and then the fuzzy

classification algorithm. The results are shown in Table 7.1.

Cris Fuzzy

Digit | % Correct | Error | Chosen Digits | % Correct Error Chosen Digits
0 0 3.41 6 80 0.005/0.74 6
1 20 1.21 1,5,6 40 0.011/0.25 7,9
2 20 1.88 6 90 0.003/0.17 7
3 0 3.80 6 30 0.013/0.71 2,6
4 0 3.28 6 90 0.001/0.34 6
5 0 4.68 6 40 0.005/0.80 6,7,9
6 0 4.24 0,4,5,6 100 0.0/0.0
7 90 0.05 5 100 0.0/0.0
8 0 3.34 0,6 20 0.009/1.08 0,2,3
9 10 1.49 6 100 0.0/0.0

Total 14 2.75 69 0.005/0.41

Table 7.1: Initial Results with a Trained Male Speaker
Ten unknown samples for each digit were classified. The system accuracy for
each digit and the total accuracy are shown for both crisp and fuzzy techniques.
The Chosen Digits column shows the results of misclassifications.

Error values represent the average distance from the correct classification to the
actual classification. Crisp error values were calculated by averaging the absolute

magnitude of the differences between the distance from the correct classification and the

distance from the actual classification:
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0
where E; is the Error for digit i, d' is the distance for the correct classification for digit 1
and d is the distance for the actual classification made by the system for digit i. For the
results using the fuzzy algorithm, the error is expressed as the degree of membership error
and the distance error. Both errors are computed the same way as the crisp error.

Analysis of the crisp results reveals that when the system misclassified a waveform,
it classified it as the waveform Six 83% of the time. Examination of the templates
revealed that the waveform for Six was on average 2.25 times shorter than the other
templates. Even though distance calculations are normalized to reduce the effects of
template length, an extremely short template, relative to the lengths of the other
templates, will predispose the system to that classification. The fuzzy results show a
more even distribution among misclassifications.

The waveform for the template Six was much shorter than the other templates
because it begins and ends with the unvoiced phoneme s. Unvoiced phonemes have a
much lower relative volume than voiced phonemes. Since the threshold maximum was
set to a relatively high value, the beginning and ending phoneme were almost completely
removed from the template. In order to remove the classification bias, a much lower

threshold maximum needs to be used.

7.3 Additional Trials
Using the same trained male speaker as in the initial trial, a new set of template and
sample waveforms were recorded. The threshold maximum was set to 8, and the

threshold minimum was set to 0. The results are shown in Table 7.2.
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Cris Fuzzy
Digit | % Correct | Error | Chosen Digits | % Correct Error Chosen Digits
0 100 0.0 100 0.0/0.0
1 60 0.29 5 100 0.0/0.0
2 40 0.55 3 100 0.0/0.0
3 0 1.32 2 40 0.008/0.52 2
4 10 1.56 0 30 0.016/1.27 0
5 20 1.66 8 70 0.01/0.28 6, 8
6 100 0.0 100 0.0/0.0
7 0 2.81 8 100 0.0/0.0
8 100 0.0 100 0.0/0.0
9 20 1.10 5,8 80 0.002/0.14 1,6
Total 45 0.93 82 0.004/0.22

Table 7.2: Results with a Trained Male Speaker
Ten unknown samples for each digit were classified. Each template and unknown
were segmented using a lower threshold maximum to remove classification bias.

The results show a dramatic increase in accuracy for the crisp algorithm.
Classification accuracy of all waveforms except Three and Seven increased. For the crisp
algorithm, the system confused the waveform 7wo with the waveform Three and visa
versa. The system also confused Zero with Four, Eight with Five, and Five and Eight
with Nine. Interestingly, recognition for Seven dropped from 90% to 0%; this result is
quite unexpected since seven is a two syllable word and has one of the most unique and
consistent waveforms. For the fuzzy algorithm, the system most frequently confused 7wo
with Three and Zero with Four. It is interesting to note that the template for Zero was
longer than the template for Four (Two was the shortest template).

Another trial was conducted with an untrained female speaker. The segmentation
thresholds were the same as with the previous male speaker. The results are shown in
Table 7.3. The system correctly classified all 100 waveforms using both the crisp and

fuzzy algorithms.

53



Cris Fuzzy
Digit | % Correct | Error | Chosen Digits | % Correct Error Chosen Digits
0 100 0.0 100 0.0/0.0
1 100 0.0 100 0.0/0.0
2 100 0.0 100 0.0/0.0
3 100 0.0 100 0.0/0.0
4 100 0.0 100 0.0/0.0
5 100 0.0 100 0.0/0.0
6 100 0.0 100 0.0/0.0
7 100 0.0 100 0.0/0.0
8 100 0.0 100 0.0/0.0
9 100 0.0 100 0.0/0.0
Total 100 0.0 100 0.0/0.0

Table 7.3: Results with an Untrained Female Speaker
Ten unknown samples for each digit were classified. Each template and unknown
were segmented using a lower threshold maximum to remove classification bias.

In an attempt to explain the perfect results of the female speaker, crisp template
correlations for each speaker were calculated. The results for the male speaker are shown
in Table 7.4; the results for the female speaker are shown in Table 7.5. The template

correlations are symmetric.

Digit] O 1 2 3 4 5 6 7 8 9
0 0 11.73 1 14.78 | 13.15 | 12.03 | 13.11 | 15.57 | 13.40 | 14.13 | 16.04
0 13.89 | 11.20 | 11.69 | 10.68 | 14.31 | 9.88 [ 13.30 | 12.54
0 12.61 | 15.17 | 12.49 | 15.46 | 15.21 | 13.73 | 12.59
0 10.99110.14 | 13.43 | 12.09 | 10.14 | 11.38
0 10.95 ] 12.13 | 10.27 | 9.40 | 14.54
10.02 ] 10.75 | 9.01 | 12.47
0 11.73 ] 7.48 | 16.49
0 11.86 | 12.97
0 10.81

O |0 (I[NNI~
(e

Table 7.4: Crisp Template Correlation for Male Speaker
Each cell shows the distance between a pair of templates.
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Digit] O 1 2 3 4 5 6 7 8 9
0 0 999 | 854 | 9.17 | 11.38 | 7.55 | 10.30 | 8.32 | 11.81 | 10.42
1 0 943 | 9.50 | 14.08 | 6.95 | 7.22 | 6.51 | 10.09 | 8.14
2 0 5.88 | 13.85| 8.43 | 9.07 | 9.65 [ 11.80 ] 12.16
3 0 13.44 1 12.61 { 10.20 | 11.88 | 12.60 | 15.99
4 0 13.26 | 14.68 | 14.28 | 18.28 | 17.61
5 0 11.46 | 10.71 | 8.71 | 8.93
6 0 6.46 | 6.52 | 11.60
7 0 791 | 9.36
8 0 10.35
9 0

Table 7.5: Crisp Template Correlation for Female Speaker
Each cell shows the distance between a pair of templates.

The correlation results, while interesting, do not provide any revealing answers to the
question of why the female speaker's results were so impressive. On average, the male
speaker’s templates were more diverse, which should indicate that they would be better
for classification. One possible answer is that the female speaker was British, which may
predispose her to speak clearly and accurately. More trials are needed to determine which

factors most prominently affect the system.

7.4 Sub-Sampling Trials

Using the templates and a subset of the sample waveforms from the initial trial set,
sub-sampling trials were performed to determine how well the crisp and fuzzy algorithms
respond to information loss. Given a waveform recorded at a specific sampling
frequency, sub-sampling involves finding the maximum (or peak) value from a group of
samples within a specific time period. For example, the template and sample waveforms
were sampled at 6 kHz. Sub-sampling at 1000 Hz involves finding the maximum value
from every 6 samples; sub-sampling at 100 Hz means taking the maximum value from

every 60 samples. Table 7.6 shows the results of sub-sampling.

55



The crisp system tends to be erratic and the results are not consistent as the degree of
information loss increases. The fuzzy system is much more tolerant to information loss,
and degrades well as the degree of information loss increases. These results were
expected, and confirm the assertion that fuzzy systems are able to work effectively even

in the presence of uncertainty.

Sub-Sampling Crisp Fuzzy
Frequency (Hz) % Correct % Correct
1000 20 75
400 10 50
200 35 45
100 35 25

Table 7.6: Sub-Sampling Results
The Table shows the results of sub-sampling a various frequencies.

7.5 Summary

The accuracy of the fuzzy speech recognition system is guaranteed to be at least as
good as the crisp system; however, as the results show, much better accuracy can
generally be achieved. As the results with the female speaker showed, some speech
factors can affect recognition accuracy dramatically. Isolating these features and training

speakers to exploit them will aid future recognition systems.
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CHAPTER 8
CONCLUSIONS

8.1 Suggestions for Future Work

Most importantly, more trials should be conducted. Various segmentation threshold
values should be tested for each speaker to determine optimal values for general
recognition. Testing recognition using languages other than English could also provide
useful insights. Tests with increased vocabulary can be performed to determine the
system's ability to scale gracefully.

The ultimate goal of speech recognition is the design of a system capable of
recognizing continuous speech from multiple speakers from a large vocabulary. Testing
speakers using templates from other speakers should provide results that will aid in
extending the system’s ability to recognize speech from multiple speakers. A series of
templates could be used in a clustering algorithm to determine an optimal template for
each word in the vocabulary. Also, the clustering algorithm could be used to determine
the uncertainty inherent in the system and build fuzzy membership functions for optimal
recognition.

If higher accuracy is required, spectral analysis can be added to select the most likely
classification. To limit the number of spectral analyses that must be performed, only the

most likely candidates should be examined.

8.2 Conclusions
This thesis examined the issues involved in designing a simple speech recognition
system. The speech waveform was analyzed and its features discussed. Information

gained from biological and psychological studies was used to simplify the speech
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waveform. The highlights of speech recognition history were reviewed and recognition
techniques outlined. Basic fuzzy set theory was presented and related to the problem of
speech recognition.

The last half of the thesis was concerned with the design of a fuzzy speech
recognition system. Analysis of the recognition technique reveals that the use of fuzzy
logic can only improve the system's performance. For the male speaker, the fuzzy system
performed considerably better than the crisp system. The results also showed that the
fuzzy system degraded better than the crisp system as the information's uncertainty

increased.
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APPENDIX A

CODE
[The code for this Thesis has been removed; for more
information please contact the author]
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allophone

diphone

dynamic programming

formant

fuzzy number

fuzzy set

linguistic variable

phone

phoneme

syllable

time normalization

GLOSSARY

A set of phones within a language that contain the same
information.

A transitional sound identified by segmenting adjacent phones
at their steady-state centers.

A pattern matching technique with a nonlinear time
normalization effect. The algorithm attempts to optimally
eliminate timing differences by warping one waveform onto the
axis of another while aligning similarities.

A band of high energy concentrated in a specific frequency
range. Multiple formants may exist at harmonics of the base
formant. Formants are the result of the natural resonances of
the human vocal tract. Formants are generally found in vowels.

A set of numbers around a certain interval. To qualify as a
fuzzy number, the set must satisfy:
1.) The set must be a normal fuzzy set.
2.) *A must be a closed interval for every ae(0, 1] where
@A = {x| AX) > a}.
3.) The support of A, A, must be bounded.

A set of elements which may have a graded degree of
membership between no membership and complete

membership.

A fuzzy set or collection of fuzzy sets which represent a single
concept in a particular context.

Minimal unit of speech sound. Physically unidentifiable due to
coarticulation and anticipation effects.

The total collection of allophones that operate similarly.

A unit of spoken language containing a vowel, dipthong, and /
or a consonant.

A technique used to eliminate nonlinear timing differences
between two waveforms.
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vocalic sound A sound containing a highly defined formant structure.
voiced sound A sound in which the vocal cords vibrate. Examples include
the vowels and "m", "n", and "r". Sounds like "s", "k", and "p"

are unvoiced.

word A sound or collection of sounds that communicates a complete
message.
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