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Abstract 
Articulated robot arms offer maximum positioning 

flexibility but suffer from complex kinematics. In most 
applications, linear motion is desirable. Calculating the 
kinematic equations which govern an articulated arm is 
straight forward; however, it is generally difJicult to 
calculate the inverse kinematic equations that are needed 
to position the arm in closed form. Using a fuzzy 
reasoning system, it is possible to accurately position an 
articulated arm without explicitly solving the inverse 
kinematic equations. 

1. Introduction 

Manipulator arms which mimic the human arm are 
called articulated arms. Articulated arms have several 
important advantages over other configurations: they can 
reach over or under objects, cover a large work space 
relative to the volume of arm, and have maximum 
flexibility. However, these advantages come at the cost 
of more complex kinematic models: difficulty in 
controlling linear motion, and difficulty in visualizing 
exactly how the arm should move from one point to 
another [ 11. 

The kinematic equations which govern an articulated 
arm convert joint coordinates into 3-dimensional world 
coordinates. Using basic geometric relationships these 
equations are generally easy to express in closed form. 
But the inverse kinematic equations, which convert from 
world coordinates to joint coordinates, often cannot be 
obtained in closed form. In order to position the arm, the 
control system must be able to convert from the world 
coordinates to the corresponding joint coordinates. In 
effect, it must solve the inverse kinematic equations, 
sometimes called the arm equations. 

In the cases where the arm equations cannot be found 
or where they are too complex to calculate in real time, 
heuristics must be used to estimate the joint coordinates 
based on information about the arm configuration. A 
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fuzzy reasoning system pr'ovides an excellent platform for 
dealing with the ambiguity present in such heuristics. 

2. System Implementation 

The experimental system implementation consists of a 
personal computer, a Mo1:orola 68HC 1 1 microprocessor, 
[2, 31 and the articulated arm. The personal computer 
provides a graphical user interface which controls the 
desired arm position and motion. Position is specified in 
spherical coordinates which are provided as inputs to the 
fuzzy control system. The control system gives crisp 
joint coordinates as outputs. The joint coordinates are 
then sent to the HCll  w'hich is responsible for actually 
positioning the arm. Thie arm consists of three servo 
motors (waist, shoulder, and elbow) and three solid links 
as shown in Figure 1. The HCll  outputs the time 
intensive wave form necessary to position the servos 
accurately. 

It is important to note that the arm runs "open loop." 
There are no position sensors or other feedback 
mechanisms to aid in positioning the arm. Ins 
are sent to the servo motors which then move the arm to 
its new position. The positioning accuracy depends on 
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Figure 1 : Articulated arm. 



Figure 2: Manipulator arm in zero position. 

the accuracy with which the joint coordinates are 
computed and the resolution of the servo motors 
(approximately .7 degrees) in moving the arm. 

Figure 2 shows the articulated arm in the zero position. 
The direction of positive rotation for each joint is also 
shown. 01 is the angle of rotation for the waist, 02 for the 
shoulder, and 83 for the elbow. Each servo motor can turn 
through an angle of about 190". In the implementation, 
each servo (joint) is limited to an angle of rotation of 
180". Each joint is able to reach 256 discrete points 
evenly distributed across the axis of rotation. In our 
implementation, the arms are all of unit length (L1 = L2 = 

L3 = 1) and the arm can reach points in the 
(approximately) half-sphere having the cross-sectional 
profile shown in Figure 3. If L3 < L2, the arm would not 
be able to reach back to the vertical axis, and the 
workspace envelop would consist of two concentric half- 
spheres. 

For the articulated arm presented here, the kinematic 
equations, in Cartesian coordinates, are: 

x = C O S ( B ~ ) [ L ~ C O S ( ~ ~ )  + L ~ C O S ( B ~  + e3)1 
y = sin(81)[L2cos(02) + L3cos(B2 + 83)] 
z = L2sin(82) + Lyin(82 + €9 + L1 

As can be seen from examination of these equations, 
derivation of the arm equations (i.e., solving for 81, 82, 
and 83 in terms of x, y, and z) is a non-trivial endeavor. 
In some configurations, it may not be possible to solve 
the equations in closed form. In any case, solving for the 
joint coordinates using either a numeric procedure or a 
heuristic, if they are available, is a time consuming 
process. 

To control the arm, we begin by observing (Figure 4) 
that the point (x, y, z) must lie in the plane defined by the 
vertical axis and the arm. Thus, the waist angle, 81 is 
determined by tan(81) = y/x or 81 = arc tan (y/x). Within 
the plane the point (x, y, z) can be described by the 
spherical coordinates p and cp, where p is the distance 
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( b) 
Figure 3. Workspace envelope for the 
articulated arm. (a) shows the envelop 
cross section and (b) shows the envelope 
in 3-dimensions. 

from the origin to the end of the arm and cp is the 
inclination angle from the horizontal to the vector p. 

This gives the kinematic equations in spherical 
coordinates: 

(la> 

cp=arctan[ ,i,z.yz z j 
[L2sin(Q,) + L+in(62 + Q3)+Ll] 

[L,cos(~,) + L,cos(Q, + Q,)] 
= arc tan 
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Figure 4. Spherical coordinate system for 
the articulated arm. 

Here 8 is the angle of rotation horizontally, cp is the 
angle of inclination, and p is the distance from the origin. 
From equation (1 a) the waist angle, 8 1 is found trivially 
and the 3-dimensional positioning problem is reduced to a 
2-dimensional problem. When the arm is in the vertical 
position (cp = d 2 )  the denominator in equation (lb) is 0 
and the expression for arc tan is undefined. Thus, for the 
two dimensional positioning 
alternative formulation: 

p= {[L,cos(B,) + L,cos(B, 

+ [L,sin(B,) + L,sin(B* 

["'*I cp = arc cos 

problem we use the 

] (2b) 
L,cos(B,) + L,cos(B, + 65) [ P 

=arc cos 

Observe that p has its maximum value of 3 when the 
arm is fully extended vertically (82 = n/2,83 = 0). 

Again, finding 82 and 83 given p and cp, is generally 
difficult. However, we can easily compute p and cp given 
02 and 03. Figure 5a shows contours of constant 82, 
constructed by evaluating the expressions in equation 2 
for p and cp while holding 82 constant and rotating 83 
through its full range of values (83 E [ 0, n]). The 
contours shown are for 82 ranging from 0" to 180" in 
increments of 20". Similarly, Figure 5b shows contours 
of constant 83 from 0" to 180" in increments of 20". 
Although no closed form solution exists, these contours 
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Figure 5. Contours of constant 82 (a) and 
constant 83 (b) lor the funy positioning 
system 

represent the solution to the inverse kinematic equations 
for a given p and cp. 

4. Fuzzy Positioning System 

An alternative to explicitly solving the arm equations is 
to model the arm solution in Figure 5 .  Although the arm 
solution is highly non-linear, a good approximation can 
be obtained. The objective is to identify points in (p, cp) 
where the arm solution is known and use those points as 
markers from which the fuzzy rule base for the 
positioning system can ble developed. 

The overall structure of the fuzzy positioning system 
is shown in Figure 6 .  Input variables, provided by the 
Crisp Crisp 
lnaut Outnut 
tl 
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cp 

Figure 6 .  Fuuy positioning system. 
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Figure 7. 83 versus p at cp = 100". 

user, give the location, in spherical coordinates, that the 
arm is to move to. These inputs are first fuzzified to 
represent the coordinates as members of a set of fuzzy 
input sets. The fuzzy inputs are then matched against the 
corresponding rules in the rule base and the results 
defuzzified to give the crisp outputs to the arm servo 
motors. 

In the sequel, we illustrate the operation of the fuzzy 
positioning system for the inputs: 8 = 50", cp =loo", and p 
= 2.6. As noted above, the waist angle 81 is found 
immediately: 81 = 8 = SO". 

4.1 Fuzzification 
The first step in designing the rule base is to create 

membership sets which describe the inputs. In this case, 
there are 2 input variables: p and cp. (81 = 8 is assumed to 
be already known.) The degree of accuracy of the model 
will be strongly influenced by these set descriptions. 

The variable cp describes an arc of approximately 25" to 
180" for the given arm configuration. Observe from 
Figure 5b that the contours of constant 83 are closest 
together, indicating a rapid change with respect to p, for 
large values of p. This is shown in Figure 7 which shows 
83 versus p for a cross section of Figure 5b at cp = 100". 
To approximate this type of surface with triangular fuzzy 
sets (which gives a piecewise linear approximation to the 
surface), it is best to have fuzzy sets that are more closely 
spaced where the change in 83 is varying and more 
widely spaced where 83 is changing linearly. As shown in 
Figure 7 the rapid change in p starts at about p=2.7 at cp 
=165", p starts to change rapidly at about p=1.8. 
we approximate p with the fuzzy sets shown in Fig 

Also observe in Figure 5b, for circles of 
value of 83 for cp near 90" changes relati 
respect to changes in cp. Near the ends of the range, 83 
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(b) 
Figure 8. Fuzzy sets representing cp used to 
approximate 83. 

changes rather quickly for changes in cp. Thus we chose 
to represent cp with fuzzy sets that are more closely 

spaced at the extremes than near the 90' point. These 
s s xs vs s b VL xe 
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(b) 
Figure 9 .  Fuzzy sets representing cp (a) and p 
(b) used to approximate 82. 
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sets are shown in Figure 8b. 
Similarly, observe from Figure 5a that for values of cp 

greater than approximately 80" the contours of constant 
82 are approximately evenly spaced for constant p. For cp 
< 80° the rate of change of 02 is somewhat less (the 
contours are spaced farther apart). Thus, we chose to 
represent 82 with the fuzzy sets shown in Figure 9b. 
(More can be used for greater accuracy.) Although the 
effect is not as pronounced as in Figure 5b, we again 
observed that 02 changes most rapidly for large and small 
values of p. Thus, again we use fuzzy sets that are 
closely spaced for small and large values of p and 
relatively widely spaced for p in the middle of its range to 
best approximate this curve behavior. These sets are 
shown in Figure 9a. 

Example: Matching the values given for cp and p against 
the fuzzy sets in Figures 8 and 9 we find the 
corresponding fuzzy inputs: 

For 02 (Fig. 9): 
cp = 100" + 0.33 in M and 0.66 in ML; 
p = 2.6 + 0.6 in L and 0.4 in VL (3 a) 
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For 83 (Fig. 7 & Fig. 8): 
cp = 100" I) 0.5 in Id and 0.5 in ML; 
p = 2.6 + 0.6 in L imd 0.4 in VL (3b) 

4.2 Fuzzy Rule Base 
Figure 10 shows the fitzzy rule base in the form of a 

Fuzzy Associative Memoiry (FAM). Potentially, 90 rules 
are needed to control 82 and 108 rules for 83; however, 
due to physical constraiints only 40 rules are actually 
required for 82 and 42 rules for 83. Observe that the rule 
output is a crisp number rather than a linguistic term 
referring to a fuzzy set (often singleton valued). This 
simplifies the rules and enables the rule base to be 
constructed directly from Figure 5. For example, rule at 
the FAM location (L,M) iin Figure 10a is read as: 

if p = Medium and p == Large, then 82 = 49 O 

is derived by examining Figure 5a for cp = 90' and p = 
2.5. Note that these are the respective nominal values 
(when viewed as fuzzy numbers) of the fuzzy sets M for 
cp in Figure 9a and L for p in Figure 9b. If linguistic terms 
and singleton fuzzy output sets had been used, tuning the 
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Figure 10. Fuzzy Associative Memory (FAM) for €Q and 83 as functions of cp and 
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controller to get the most accurate positioning of the arm 
would have resulted in the linguistic output for the 
previous rule being assigned the numerical value 45". 
Hence, by using the contours in Figure 5 to construct the 
rule base directly, considerable tuning of the controller 
and adjusting of the fuzzy sets was avoided. 

The "degree of truth" of the rule output is the minimum 
of the degrees of truth of the rule antecedents. For 
example, with the given inputs, the output of the above 
rule will have the degree of truth min(0.33,0.6) = 0.33. 

Example: For the given inputs, equation (3), the 
following rules are activated; the degree of truth of the 
output is also shown: 

For 82: ( 4 4  
i f  p = M e d i u ~  and p = Large, then $2 = 49 2 

if p = M e d i u ~  and p = VeryLarge, then 82 = 61 2 

i f  p = MLarge and p = Large, then 82 = 75 3. 

if p = MLarge and p = VeryLarge, thett 82 = 89 2 

degree of t r ~ t h  = 0.33 

degree of truth = 0.33 

degree of truth = 0.6 

degree of truth = 0.4 

For 83: (4b) 
m ~ n d p  =Large, then 83 = 83 2 

if p = M e d i u ~  and p = VeryLarge, then $3 = 58 2 

if 9 = MLarge and p = Large, then 83 = 74 4. 

if p = MLarge and p = VeryLarge, then 83 = 45 2 
degree o ~ t r ~ t h  = 0.5 

degree of truth = 0.4 

The fuzzy outputs are defuzzified using the "weighted 
averages" technique commonly used for singleton output 
sets (This is the same as the center of gravity technique 
applied to singleton fuzzy sets [4, p. 3361) : 

n 

C pis 
i = l  

(5) 

i=l 
where zi is the output of the ith rule and vi is its degree of 
truth. The resulting crisp output matches the control 
surface exactly at each of the marker points and provides 
a linear interpolation of the control surface between these 
points. 

le: The outputs in equation (4), defuzzified 
according to equation (5) yield: 

02 = 70.42' 
83 = 66.5' 

Hence, for the input: 8 = 50', cp = IOO', and p = 2.6 the 
solution to the inverse kinematic equations, found by the 
fuzzy positioning system is: 

81 = 50' 
02 = 70.42' 
83 = 66.5' 

To verify the accuracy of the system, we can substitute 
these values into equations (1 a), (1 b), and (1 c), yielding: 

0 =  50' 
cp = 98.6' 
p = 2.65. 

The arm position is quite sensitive to small errors in 82 
and 83; the exact solution, to two decimal places, is 82 = 

70.44 and 03 = 71.33. 
Thus, the fuzzy positioning system provides an 

effective solution for controlling the articulated arm. The 
accuracy of the result depends critically on the marker 
point values in the FAM, Figures 10a and lob, and only 
marginally on the definition of the input fuzzy sets. At 
these points the solution should be exact. For other points 
the solution is found by interpolating between the values 
at the marker points. If the fuzzy membership functions 
are changed, the accuracy of the interpolation may vary, 
but generally not by a great deal; if the values at the 
marker points are in error, gross errors in the positioning 
of the arm may occur. 

sion 

Articulated arms allow maximum flexibility 
approaching that of the human arm. The major problem 
with articulated arms in the past has been the difficulty in 
calculating the solution to the inverse kinematic 
equations. However, the fuzzy positioning system 
developed here shows that a simple representation can be 
used in some applications. 

The ability to control linear arm motion without solving 
for the inverse kinematic equations allows more complex 
articulated arms to be utilized. In a test model, the fuzzy 
positioning system proved to be extremely fast, flexible, 
and easy to maintain. Changes in the arm configuration 
require changes in the rule base, but such changes are 
easily made off-line. 
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